Theorem Proving and
Testing for
Autonomous Systems

Kerstin Eder

University of Bristol and
Bristol Robotics Laboratory

Elic University of b r&
BRISTOL

Bristol Robotics Laboratory

Verification and Validation for
Safety in Robots

To develop techniques and
methodologies that can be
used to design autonomous
intelligent systems that are
verifiably trustworthy.

Correctness from Specification to
Implementation

User Requirements Verification
High-level Specification (OL)
.. Verification
Optimizer
Design and Analysis (IL)
~ (Simulink) ol
Implement
Controller (SW/HW)
e.g. C, C++, —

RTL (VHDL/Verilog) <

What can be done at the design level?

D. Araiza lllan, K. Eder, A. Richards.

Formal Verification of Control Systems’ Properties with Theorem Proving.
International Conference on Control (CONTROL), pp. 244 — 249. IEEE, Jul 2014,
http://dx.doi.org/10.1109/CONTROL.2014.6915147

D. Araiza lllan, K. Eder, A. Richards.

Verification of Control Systems Implemented in Simulink with Assertion
Checks and Theorem Proving: A Case Study.

European Control Conference (ECC), pp. tbc. Jul 2015.
http://arxiv.org/abs/1505.05699 4

Simulink Diagrams in Control Systems

Control systems design level : Implementation level
x(k +1) = Ax(k) + Bu(k) A — x :
u(k) = —Kx(K) C R iy
1

Bt
) il wim) | Code

= Simulating the control systems

= Analysis techniques from control systems theory (e.g., stability)
= Serve as requirements/specification

= For (automatic) code generation

Verifying Stability

Stability

Matrix P > 0
(Lyapunov function)

l

Matrix
P-(A-BK)" P(A-BK) > 0
(Lyapunov function's difference)

Equivalence
V(k)-V(k-1) = x(k-1)T [(A-BK)T P(A-BK)-P]x(k-1)
(Lyapunov's equation application)

/ Capture control
systems

requirements

Add as assertions

Retain in code
implementation

HHISHEHES

Assertion-Based Verification

Matrix

Multiply . Z-I
| Ax |—.1_ncﬂ |

P! Matrix J
Multiply
r Bu

Matrix

Multiply
=

Outl

matnx T/F

Aascrtin~

Is_pos_ded P
7 A1.1.1

- wdiff

Mastrix
o Multiply A-BK Vprew

BK

N,

vl
of 2 o B N > S

ity

Outl v2

prev Aceertian

Is_equal

R121

P S B

N
!

Outt +

»o » -

matnx TF > (

(A-BK)TP(A-BK)-P Gain R rting
Is_pos ded

&

{A-BK)TP{A-BK)

R122

Combining Verification Techniques

Matrix P > 0
(Lyapunov function)

Stability

l

Matrix

Equivalence

P-(A-BK)T P(A-BK) > 0 | | V(K}V(k-1) = x(k-1)T [(A-BK)" P(A-BK)-PJx(k-1)
(Lyapunov function's difference) (Lyapunov's equation application)

v v

I

First order logic theory of the
Simulink diagram

=
.
Puhiply

Axiom: Bu=B *u 2]

Test in simulation

Automatic
theorem proving

Goal: vdiff == vdiff_an e

riveras / simulink ©wWatch~ 3 *Star 1 ¥Fork o

D 4 commits ¥ 1 branch © 0 releases i 0 contributors <> Code
Branch: master - | simulink / + i= O Issues 0
New examples 1l Pull requests 4
Dejanira authored 23 days ago latest commit Sédedgcaée EE Wiki
B examples New examples 23 days ago
[Is_equal_scalar.mdl Creation of the git repository. 8 months ago 4~ Pulse
B Is_pos_def.mdl Creation of the git repository. 8 months ago i Graphs
[©) LICENSE Creation of the git repository. 8 months ago
B Numerical.mdl Creation of the git repository. 8 months ago HTTPS clone URL
https://github.com/1 [
E README Authorship clarified in some files. README modified. 8 months ago
You can clone with HTTPS, SSH,
B goal.mdl Creation of the git repository. 8 months ago or Subversion. ®
B library_simulink.txt New examples 23 days ago ¥ Clone in Desktop
[E) manual.pdf Creation of the git repository. 8 months ago &> Download ZIP
[E) matrix.why New examples 23 days ago
B require.mdl Creation of the git repository. 8 months ago

http://github.com/riveras/simulink

D. Araiza lllan, K. Eder, A. Richards.

Formal Verification of Control Systems’ Properties with Theorem Proving. International
Conference on Control (CONTROL), pp. 244 — 249. IEEE, Jul 2014.
http://dx.doi.org/10.1109/CONTROL.2014.6915147

D. Araiza lllan, K. Eder, A. Richards.

Verification of Control Systems Implemented in Simulink with Assertion Checks and
Theorem Proving: A Case Study.

European Control Conference (ECC), pp. tbc. Jul 2015. 9
http://arxiv.org/abs/1505.05699

Simulation-based testing
Why and how?

D. Araiza lllan, D. Western, A. Pipe, K. Eder.
Coverage-Driven Verification - An approach to verify code for robots

that directly interact with humans.
(accepted for publication at HVC 2015)

D. Araiza lllan, D. Western, A. Pipe, K. Eder.

Model-Based, Coverage-Driven Verification and Validation

of Code for Robots in Human-Robot Interactions.

(under review for publication at ICRA 2016) 10

System Complexity

11

“Model checking works best
for well defined models that
are not too huge.

Most of the world
IS thus not covered.”

Yaron Kashai,
Fellow at the Systems and Verification R&D Division of Cadence

Coverage-Driven Verification

SUT

14

Code Structure

Move_robot(reset_position); Gripper(open)
reset

Read_signal_topics; if signal(startRobot) f
transition else loop until timeout
receive_signal

Plan(towards piece); Move_arm(plan); Gripper
(close); Plan(towards human); Move_arm
(plan) move

17

Send(informHuman...)
send_signal

Read_signal_topics; if signal(humanReady)

transition else loop until timeout |
receive_signal

Read_sensor_topics; if no sensors_signal loop
until timeout
sense

17

If GPLOK transitionl else transition2
decide

Gripper(open); Wait(2s)
release

End

YYVY

done

J. Boren and S. Cousins, “The SMACH High-Level Executive,”
IEEE Robotics & Automation Magazine, vol. 17, no. 4, pp. 18-20, 2010.

Coverage-Driven Verification

Response
Test - SUT *

16

Coverage-Driven Verification

Response
Test Test
> SUT -
Generator

17

Test Generator

= Effective tests:
- legal tests
- meaningful events
- Iinteresting events

— while exploring the system
- typical vs extreme values

= Efficient tests:
- minimal set of tests (regression)

= Strategies:
- Pseudorandom (repeatability)
- Constrained pseudorandom
- Model-based to target specific scenarios

18

Test Generator

= Effective tests: ’

e
- legal tests gﬁ

) o
. \o®
- meaningful events
- interesting events
— while exploring the system

- typical vs extreme values

= Efficient tests:
- minimal set of tests (regression)

= Strategies:
- Pseudorandom (repeatability)
- Constrained pseudorandom
- Model-based to target specific scenarios

19

Test Generator

= Effective tests:
- legal tests
- meaningful events
- Iinteresting events

— while exploring the system
- typical vs extreme values

= Efficient tests:
- minimal set of tests (regression)

= Strategies:
- Pseudorandom (repeatability)
- Constrained pseudorandom
- Model-based to target specific scenarios

Model-based Test Generation

Formal model

Human

activateRobot

waitSignal

Robot

activateRobot

getPiece

InformHuman....

Example trace

State: robot.start,
human.start

Transitions:
human to human.activateRobot

robot to robot.activateRobot

State: robot.activateRobot,

human.activateRobot, time+=4(

Transitions:
robot to robot.getPiece

State: robot.getPiece,
human.activateRobot

Transitions:
human to human.waitSignal

robot to robot.informHuman...

State: robot.informHuman...,
human.waitSignal

High-level stimulus

set_param time =
receive_signal
send_signal humanIsRe
set AT Al time =
set_param Tas
set_param _gazel

set aram ress D
set_param 1 t 0

informHumanOfHandoverStart

ady

21

Model-based Test Generation

High-level stimulus

receive_signal informHumanOfHandoverStart

“Human"” actions in
ROS

Delay

Set gaze,
pressure and
location

v

Set gaze,
pressure and
location

v

Interaction
done

Parameter instantiation:
2s

05s

Gaze: (0.1 m,0.5m,40°)
Location: (0.45 m, 0.05 m, 0.73 m)

Gaze: (0.1 m,0.5m,30°)
Pressure: (15, 120, 140) to (7, 90, 100)
Location: (0.45m, 0.05 m, 0.73 m)

22

Coverage-Driven Verification

—p» Checker =—

Response

Test Test o—> SUT —— —
Generator

Checker

= Requirements as assertions monitors:

- 1f [precondition], check [postcondition]

— “If the robot decides the human is not ready,
then the robot never releases an object”.

- Implemented as automata

= Continuous monitoring at runtime, self-checking
— High-level requirements

— Lower-level requirements depending on the
simulation's detail (e.g., path planning, collision
avoidance).

assert {robot 3D space != human 3D space}

24

Coverage-Driven Verification

—p» Checker =—

Response

T I
Test est SUT —— —

Generator

Coverage-Driven Verification

Test Test ‘ Responsg>
Generator

26

Coverage Collector

Coverage models:

- Code coverage from statement to MC/DC
- e.g., using the 'coverage' modules in Python

Coverage report - Mozilla Firefox 8 = m 3 E9(100%) 4) 10:59 &%

E Coverage report: 28% filter
| 4 |
“' Module statements missing excluded coverage
N devel/lib/python2.7/dist-packages/bert2_simulator_dai/msg/_Human.py 56 46 0 18%
% devel/lib/python2.7/dist-packages/bert2_simulator_dai/msg/_Robot.py 49 44 0 10%
- devel/lib/python2.7/dist-packages/bert2_simulator_dai/msg/_Sensors.py 59 48 0 19%
sre/bert2_simulator_dai/scripts/robot.py 402 182 o 55%
= /opt/ros/indigo/lib/python2.7/dist-packages/genpy/message.py 318 307 0 3%
/opt/ros/indigo/lib/python2.7/dist-packages/genpy/rostime.py 104 162 0 16%
/opt/ros/indigo/lib/python2.7/dist-packages/geometry_msgs/msg/_Point.py 59 48 4] 19%
é /opt/ros/indigo/lib/python2.7/dist-packages/rosgraph/names.py 119 90 4] 24%

- Structural coverage
- e.g., FSM coverage

Coverage of 100 pseudornd Tests

28

Coverage of 100 pseudornd Tests

74/ II

Coverage
Hole

29

Coverage of 160 MB Tests

30

Functional Coverage

= Requirements coverage
= “Cross-product” coverage

[O Lachish, E Marcus, S Ur and A Ziv. Hole Analysis for Functional Coverage Data. Design
Automation Conference (DAC), June 10-14, 2002, New Orleans, Louisiana, USA.]

A cross-product coverage model is composed of the following parts:
1. Asemantic description of the model (story)
2. Alist of the attributes mentioned in the story

3. Asetof all the possible values for each attribute (the attribute value
domains)

4. Alist of restrictions on the legal combinations in the cross-product of
attribute values

A functional coverage space is defined as the Cartesian product
over the attribute value domains.

31

Cross-Product Models in e

Verification struct instruction {

Languages, opcode: [NOP, ADD, SUB, AND, XOR];
such as e, operandl : byte;

support cross-product :

coverage models cover is {

natively. item opcode;

item operandl;

(ADD, 00000000)
(ADD, 00000001)
(ADD, 00000010)
(ADD, 00000011) }i

}i
(XOR, 11111110) L

(XOR, 11111111)

cross opcode, operandl

using ignore = (opcode == NOP);

Situation Coverage

J[Af—|T1|=|F|L|F|[(|r|]]1]~-

Car

Bike

HGV

Ped

Situation coverage — a coverage criterion for testing
autonomous robots

Rob Alexander*, Heather Hawkins*, Drew Rae !

* University of York, York, United Kingdom
" Griffith University, Brisbane, Australia

rob.alexander@york.ac.uk

Coverage-Driven Verification

Coverage analysis enables feedback to

test generation

Test Test

—p» Checker =—

esponse
—-

-k

Generator

34

Coverage-Driven Verification

Coverage analysis enables feedback to
test generation

—p» Checker =—

Test Test SUT I Responscl
Generator

‘ |

—p» Coverage —i

Collector

35

Stimulating the SUT

Test
Generator

A

Test Response

36

Stimulating the SUT

Test Test Response

Generator

A

37

Driver

= Environmental components (models) interacting
with the system's control software

= Examples: humans, actuators (Gazebo),
communication signals, sensors

Driver (human agent, physics simulation, interfaces)

Human high-level control Human low-level
state machine > control € >

Test Generator >

? A Gazebo

\ 4 \ 4 Y (simulation
, Coverage [Checker (assertion P engine and
S 21 Collector monitors) < environment)
A A A
¥ <—|—>
Robot high-level control <> Robot low-level
state machine control Moveit!
SUT

CDV for Human-Robot Interaction

Observations

Test Stimulus Response
Generator

Observations

D. Araiza lllan, D. Western, A. Pipe, K. Eder. Model-Based, Coverage-Driven Verification and Validation of
Code for Robots in Human-Robot Interactions. (under review for publication at ICRA 2016)

Coverage-Directed Verification

systematic, goal directed simulation-based V&V

capable of exploring systems of realistic detail
under a broad range of environment conditions

focus on test generation and coverage

constraining test generation requires significant
engineering skill and SUT knowledge

model-based test generation allows targeting
requirements and cross-product coverage more
effectively than pseudorandom test generation

robosafe / testbench

CDV simulator-based testbench with test templates — Edit

{D 2 commits P 1 branch © 0 releases

© Watch~ 1

w0 1 contributor

Branch: master - = testbench / +

Testbench live

Dejanira authored 3 days ago

Example_test_reports_mbtg_xproduct Testbench live

bert2_moveit Testbench live

bert2_simulator Testbench live
[B LICENSE Initial commit
E README.md Testbench live
[B simulator_constrained.sh Testbench live
[© simulator_mb.sh Testbench live
B simulator_random.sh Testbench live

http://github.com/robosafe/testbench

D. Araiza lllan, D. Western, A. Pipe, K. Eder.

latest commit 32443ell3c @'

3 days ago
3 days ago
3 days ago
3 days ago
3 days ago
3 days ago
3 days ago

3 days ago

*Star 0o YFork o

<> Code
@ Issues 0
I} Pull requests o

EE Wiki

4~ Pulse

[ili Graphs

£} Settings

HTTPS clone URL

https://github.com/i @_

You can clone with HTTPS, SSH,
or Subversion. ®

Coverage-Driven Verification - An approach to verify code for robots that

directly interact with humans.
(accepted for publication at HVC 2015)

D. Araiza lllan, D. Western, A. Pipe, K. Eder.

Model-Based, Coverage-Driven Verification and Validation

of Code for Robots in Human-Robot Interactions.
(under review for publication at ICRA 2016)

42

Summary

No single technique is adequate for an entire
design/system in practice.

Verification techniques can be combined.

Learn from areas where verification techniques
are mature.

We need to design for verification.

I I lal l k yo u Engineering and Physical Sciences
R hC i

Any questions?

Kerstin.Eder@bristol.ac.uk

Special thanks to Dejanira Araiza lllan, David Western, Arthur Richards,

Jonathan Lawry, Trevor Martin, Piotr Trojanek, Yoav Hollander, Yaron

Kashai, Mike Bartley, Tony Pipe and Chris Melhuish for their hard work,
collaboration, inspiration and the many productive discussions we have had.

& | A University of b r&
BRISTOL Bristol Robotics Laboratory

